Sticky Note
If k ≤ x ≤ 3k + 12, which of the following must be true? I. x - 12 ≤ 3k II. k ≥ -6 III. x - k ≥ 0
  1. I only
  2. I and II only
  3. II and III only
  4. I, II, and III
Explanation

Let's analyze the given inequality: k ≤ x ≤ 3k + 12

We can derive the following conclusions:

I. x - 12 ≤ 3k: Subtracting 12 from all parts of the inequality gives x - 12 ≤ 3k - 12 + 12, which simplifies to x - 12 ≤ 3k. (True)

II. k ≥ -6: Since k ≤ x and x ≤ 3k + 12, we can substitute x for k in the second part of the inequality, getting k ≤ 3k + 12. Subtracting 3k from both sides gives -2k ≤ 12, and dividing by -2 (which flips the inequality sign) gives k ≥ -6. (True)

III. x - k ≥ 0: Since k ≤ x, we can subtract k from both sides to get x - k ≥ 0. (True)

Since all three statements are true, the correct answer is: I, II, and III

Related MCQs

  1. 0.06.
  2. 0.6.
  3. 0.006
  4. None of these
اس سوال کو وضاحت کے ساتھ پڑھیں

  1. 3x^2 + 5x + 2 = 0
  2. 3x^2 - 5x + 2 = 0
  3. 3x^2 - 5x - 2 = 0
  4. 3x^2 + 5x - 2 = 0
اس سوال کو وضاحت کے ساتھ پڑھیں

  1. 2x-5/x-3
  2. x+1/x-3
  3. x-1/x-3
  4. None of these
اس سوال کو وضاحت کے ساتھ پڑھیں

  1. 120
  2. 130
  3. 114
  4. 112
اس سوال کو وضاحت کے ساتھ پڑھیں

  1. P=20(5)t
  2. P=5t^2+20
  3. P=20(1.25)^t
  4. None of these
اس سوال کو وضاحت کے ساتھ پڑھیں

Leave a Reply

Your email address will not be published. Required fields are marked *

1 + 2 = ?



All Rights Reserved © TestPoint.pk